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Self-organized criticality with complex scaling exponents in the train model

Franz-Josef Elmer
Institut für Physik, Universita¨t Basel, CH-4056 Basel, Switzerland

~Received 19 September 1997!

The train model, which is a variant of the Burridge-Knopoff earthquake model, is investigated for a velocity-
strengthening friction law. It shows self-organized criticality with complex scaling exponents. That is, the
probability density function of the avalanche strength is a power law times a log-periodic function. Exact
results~scaling exponent: 3/212p i / ln 4) are found for a nonlocal cellular automaton that approximates the
overdamped train model. Further the influence of random static friction is discussed.
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Ten years ago Bak, Tang, and Wiesenfeld showed th
weakly driven dissipative system with many metasta
states can organize itself into a critical state in the sense
second-order phase transition@1#. Because criticality is char
acterized by scale invariance they expect power-law beh
ior. For example, the probability density function of th
strengthS of the restructuring events~avalanches! should
scale like 1/SB whereB is some positive real number.

In continuous scale invariance the scaling factorl can be
arbitrary. This invariance is partially broken ifl is restricted

to a specific valuel̃ and its integer powersl̃n. This discrete
scale invariancehas a profound consequence@2#. It leads to

complexscaling exponentsB1 iC, whereC52p/ ln l̃. More
precisely: The scaling function has the formS2Bf (C ln S),
wheref is a 2p-periodic function. Sornette and collaborato
have shown that such scaling functions are common in m
areas, e.g., fractals, deterministic chaos, dendritic grow
and rupture@2#.

In this paper we present two models that exhibit se
organized criticality~SOC! with complex scaling exponents
The first model is the train model@3#, which is a variant of
the well-known Burridge-Knopoff~BK! earthquake mode
@4#. In the literature the BK model and the train model a
treated as examples of weakly driven dissipative syste
with many metastable states. In both models power laws
561063-651X/97/56~6!/6225~4!/$10.00
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the avalanche~earthquake! statistics have been found. I
most of these studies an unrealistic purely veloci
weakening friction law is used. But any phenomenologi
friction law has to be velocity strengthening for large velo
ties. Here we use arealistic friction law ~see Fig. 1! that is a
velocity independent Coulomb law for small velocities. F
velocities larger thanv0 it is proportional to the velocity@5#.
Our second model is a nonlocal cellular automaton that
proximates the train model in the overdamped limit.

The train model is a finite chain ofN11 blocks on a
rough surface. The blocks are coupled by springs and
interaction with the surface is described by a phenome
logical dry-friction lawF ~see Fig. 1!:

Mẍj1F~ ẋ j !5k~xj 1122xj1xj 21!, j 51, . . . ,N, ~1!

FIG. 1. The train model and the phenomenological friction la
~2!.
R6225 © 1997 The American Physical Society
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whereM is the mass of a block,xj is the position of blockj ,
andk is the stiffness of the springs. The system is driven
pulling block zero with a very small velocityv, i.e.,x05vt.
The other end of the chain is free, i.e.,xN115xN . Our fric-
tion law F reads:

F~ ẋ!5H (2`,FS] if ẋ50;

gv0 if 0 , ẋ,v0 ;

g ẋ if ẋ.v0 .

~2!

A resting block starts sliding if the sum of the spring forc
is larger thanFS . The friction law does not allow backwar
motions because the static friction can take any nega
value. The kinetic friction force is a monotonically increa
ing function of the velocity. We assumegv0,FS otherwise
the chain would not show avalanches. In the simulation
drive the system infinitesimally slowly. This can be achiev
in the following way. During an avalanchex0 is held con-
stant. After the avalanche, when all blocks are at rest~i.e.,
ẋ j50), we setx05(11e)FS /k2x212x1, with e!1. Thus
the force on block number one is (11e)FS and just exceeds
the threshold for sliding. Usually we have chosene51024.

Figure 2 shows the evolution of the model for two diffe
ent values of the damping constantg. The avalanches alway
start at the pulling end. They propagate up to a certain blo
This is the reason for the treelike structures seen in Fig
We characterize the avalanches by two quantities that ha
simple geometric meaning in Fig. 2: The lengthL and the
strengthS defined by

FIG. 2. The positions of the blocks just before an avalan
starts. Several hundreds of avalanches are shown. The param
are N550, v050.01, M5FS5k51. The initial values are
xj (0)50, for j 50, . . . ,N.
y

e

e
d

k.
2.

a

S5(
j 51

N

uxj
after2xj

beforeu, ~3!

wherexj
before andxj

after are the position of the blockj before
and after the avalanche. The lengthL is the number of blocks
that are involved in the avalanche, i.e.,xj

afterÞxj
before. For

non-system-spanning avalanches~i.e., L,N) this quantity
corresponds to the height of the branching points in the t
In Fig. 2 the area below a branching point is justS.

We see a clear distinctive behavior between the und
damped case (g50.1) and the overdamped case (g54) @6#.
The underdamped case is characterized by chaotic motio
the chain leading to an irregular sequence of avalanches
for nonrandom initial conditions@3#. In the overdamped cas
the motion is very regular. After the transient that is finish
after the first system-spanning avalanche the same sequ
of avalanches reappears periodically. In both cases SOC
discrete scale invariance occurs. But the details are differ

First we investigate the underdamped case. Figure
shows the cumulative densityP(S) for five different values
of the system lengthN. The cumulative densityP(S) is the
probability to find an avalanche that is stronger thanS. The
cumulative densities forS show steps for large avalanche
Let us assume thatP(S) fulfill a usual finite-size scaling
ansatz, i.e.,

P~S!5S2sG~S/Na!. ~4!

Note thatB5s11 because the probability density functio
is the derivative ofP. The inset of Fig. 3 shows the be
approach to such an ansatz. The value ofa was obtained
from a fit of the averaged values ofS for the system-
spanning avalanches that are responsible for the last ste
the cumulative density. This fit yieldsa52.3460.02. For
the value ofs we have chosens5121/a because a sum
rule ^S&;N has to be fulfilled@3#.

Although the finite-size scaling ansatz is not complet
satisfactory, one has the impression that for increasingN the
scaling functions are approaching a sawtooth function.

e
ters

FIG. 3. The cumulative densityP(S). The parameters are
g50.1, v050.01, M5FS5k51, andN5530, 750, 1060, 1500
and 2121. The curves are shifted by 2 log10 N in order to separate
them. The inset shows the results of finite-size scaling witha52.34
ands5121/a50.573.
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other words, the cumulative density has steps that bec
steeper and steeper for increasingN and largerS. The scal-
ing function shows oscillations that are periodic in the log
rithm of the argument. This is a clear sign of discrete sc
invariance. The numerically obtained scaling factor
l̃54.360.4. Thus the complex exponent of the probabil
density function readsB1 iC5s1112pi/ln l̃'1.57314.3i .

The self-similarity of the avalanche tree in Fig. 2~b! re-
flects the discrete scale invariance in the overdamped c
Between two system-spanning avalanches, 2n21 avalanches
occur. Heren511 int(logN/log2), where int(x) denotes the
largest integer smaller thanx. There are onlyn different
avalanche lengths and sizes. Themth type of avalanche oc
curs 2n2m times. Its length isL52m21. Thus, the scaling
factor is 2. The cumulative densityP(L) is in a log-log plot
a staircase with stairs of equal heights and widths@7#. A
similar staircase is found forP(S). Here the scaling factor is
l̃52254 becauseS corresponds to an area in Fig. 2. Th
critical exponents are a52 and s50.5. Thus
B1 iC53/212p i / ln4.

The overdamped behavior of the train model can be m
icked by the following nonlocal cellular automaton. The
state of each cell is given by the block positionsxj and a
boolean variablesj which is true when the block slides
otherwise it isf alse. The driving rule is the same as in th
train model, i.e.,x05(11e)FS /k2x212x1.

The relaxation rules are the following:~i! First the forces
f j[k(xj 2122xj1xj 11)2FS are calculated. The variablesj
is true if and only if f j.0. ~ii ! In the second step the pos
tions of all sliding blocks are updated simultaneously in
following way:

xj5xj 1
1

xj 2
2xj 1

j 22 j 1
~ j 2 j 1!, for j 1, j , j 2 , ~5!

where j 1 and j 2 are the left-nearest and right-nearest no
sliding blocks. That is,sj 1

5sj 2
5false and sj5true, for

j 1, j , j 2. The consequence of this rule is th
xj 211xj 1122xj50, for j 1,j ,j 2. Note that s0[sN11
[false. If j 25N11 thenxj 2

5xj 1
in ~5!. This rule gives the

result of a relaxation of sliding blocks governed by~1! as-
sumingv050 in the friction law~2! and immobile nonslid-
ing blocks. The slightly curved lines in Fig 2~b! are the effect
of v0Þ0. ~iii ! In the third step the boolean variablesj is
recalculated: A sliding block still slides and nonsliding blo
starts to slide for the same reason as in the first step. Tha

sj
new5sj

old~~xj 2122xj1xj 112FS /k.0!,

for j 51, . . . ,N, ~6!

where~ denotes the boolean operator for inclusive or.~iv!
Repeat steps~ii ! and~iii ! until no new block starts to slide in
step~iii !. Note that rule~ii ! is anonlocalrule becausej 1 and
j 2 can be arbitrary far from sitej . This is in contrast to mos
other automata discussed in the field, which have local re
ation rules.

The result of applying these relaxation rules are the
lowing. The first sliding block is always block number on
In the next cycle block number two starts to slide. This go
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on until no new block starts to slide. Thus the avalanc
lengthL is the smallest positive value that fulfills

x01~xL112x0!L/~L11!1xL1222xL11<FS /k. ~7!

After some straightforward calculations one finds that b
tween two system-spanning avalanches 2n2m avalanches oc-
cur. They are organized in the same binary tree as in the t
model@see Fig. 2~b!#. The length and the strength of themth
type areLm52m21 and Sm5(1122m21)FS /(6k), respec-
tively. Therefore the cellular automaton has exactly the sa
scaling exponents and log periodicity as the overdam
train model.

FIG. 4. The cumulative densityP(S) for the deterministic cel-
lular automaton for the overdamped train model with and with
randomly chosen constant static forcesFS . The parameters are
^FS&5k51 andN52121. The curves are shifted in order to di
tinguish them. The upper solid curve is the nonrandom case,
DFS50. The middle dashed curve is one realization of the rand
static friction taken from a Gaussian distribution withDFS50.1.
The lower solid curve is an average over 1000 realizations of
random static friction. The inset shows the scaling functions.

FIG. 5. The cumulative densityP(S) of the cellular automaton
with randomly chosen static frictionFS which changes after eac
slide. The parameters are^FS&5k51, DFc51023, and N5530,
750, 1060, 1500, and 2121. The cumulative densities are shifte
2 log10 N in order to separate them. The inset show the sca
function G.
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The behavior of the automaton is very sensitive to n
uniformities in static frictionFS because the avalanches a
ways stop when condition~7! is just fulfilled. We introduce
quenched randomness in two different ways leading to
different behaviors.

In the first way random numbersFS j from a Gaussian
distribution are assigned to each block. After each syst
spanning avalanche the same sequence of avalanche
pears. They are also organized in a hierarchical manner.
cumulative densities are still stairs~see Fig 4! but the heights
and the widths of the steps are fluctuating. Averaging o
many realizations of$FS1 ,FS2 . . . ,FSN% leads to cumulative
densities that still show log-periodic oscillations~see Fig. 4!.
The oscillation amplitude decreases with the noise level.
phase of the oscillation changes also but it still does
depend onN.

The automaton shows a different behavior if we assign
each block a new random numberFS j after a slide. Figure 5
shows that the oscillations in the cumulative density van
completely even for infinitesimally small noise level@8#.
Otherwise the scaling exponents are the same as for the
random case. In the underdamped case the train model is
sensitive to this kind of quenched randomness. In simu
tions of Eq.~1! with DFS /^FS&51022 we still find oscilla-
tions but with smaller amplitudes.

Why have these log periodicities not be found for pure
velocity-weakening friction laws@3#? The main reason ma
be that for such lawsanysliding motion of the chain or a par
of the chain isunstable. For a velocity-strengthening friction
force, sound waves with wavelength larger th
L̃[4pAkM /g are overdamped because their frequency
comes less thang/2M . Thus avalanches involving more tha
L̃ blocks show regular behavior after some possibly cha
transients. This regular behavior is very well described
the nonlocal cellular automaton. In the overdamped c
~i.e., L̃&1) the regular motion successively amplifies t
smallest intrinsic length scale~i.e., L51) by the factor 2.
This basic mechanism is responsible for discrete scale inv
ance which would be destroyed by the intrinsic instabilit
caused by a velocity-weakening friction force. It is uncle
why in the underdamped case~i.e., L̃@1) discrete scale in-
variance also occur. The mechanism has to be a different
r
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because the motion of a group of less thanL̃ blocks is in
general irregular. Two observations may help to explain t
phenomenon:~i! The steps in the cumulative density ofL do
not occur at powers of two but ataN/ l̃L

n , for n50, . . . ,ñ ,
where l̃L'2, a is an N-independent number between 1
and 1, andñ is clearly less than ln(aN/L̃)/ln2. ~ii ! Although
the large avalanches are organized in a binary tree, t
sequence of occurrence is different. Let us consider a
avalanche much bigger thanL̃ but not a system-spannin
one. Looking for a considerably bigger avalanche in the p
and in the future we find that in the overdamped case b
time intervals are the same whereas in the underdamped
the time interval in the past is much smaller than the ti
interval in the future. In fact only a handful of very tin
avalanches occur in the time interval in the past.

We have shown that SOC with complex scaling exp
nents occurs in the train model with arealistic velocity-
strengthening friction law. We are confident that other dep
ning models may also show discrete scale invariance.
key ingredients are the following:~i! There should be a bi-
stability between pinning and sliding for the same loc
force. This can be either achieved by inertia of the pinn
objects or by age-dependent pinning~i.e., the pinning force
which increases with the pinning time!. ~ii ! The sliding dy-
namics should be nonchaotic with diffusion-like relaxati
of long-wavelength excitations. In BK-like models
velocity-strengthening friction laws are a necessary con
tion for that.~iii ! Quenched randomness in the pinning forc
should be absent or weak. The first two properties are n
essary to get nonlocal deterministic relaxations rules sim
to our automaton. These rules are responsible for disc
scale invariance because they either amplify successivel
intrinsic ~microscopic! length scale up to the system size b
a constant factor or vice versa. Quenched randomness
torts these processes leading to fluctuations of the phas
the log periodicity, which may be smeared out if they are t
strong.
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